Rigorous Error Bounds for the Optimal Value in Semidefinite Programming
نویسندگان
چکیده
A wide variety of problems in global optimization, combinatorial optimization as well as systems and control theory can be solved by using linear and semidefinite programming. Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and degeneracy, erroneous results may be produced. The purpose of this article is to show how rigorous error bounds for the optimal value can be computed by carefully postprocessing the output of a linear or semidefinite programming solver. It turns out that in many cases the computational costs for postprocessing are small compared to the effort required by the solver. Numerical results are presented including problems from the SDPLIB and the NETLIB LP library; these libraries contain many ill-conditioned and real life problems.
منابع مشابه
Determining the Optimal Value Bounds of the Objective Function in Interval Quadratic Programming Problem with Unrestricted Variables in Sign
In the most real-world applications, the parameters of the problem are not well understood. This is caused the problem data to be uncertain and indicated with intervals. Interval mathematical models include interval linear programming and interval nonlinear programming problems.A model of interval nonlinear programming problems for decision making based on uncertainty is interval quadratic prog...
متن کاملTermination and Verification for Ill-Posed Semidefinite Programming Problems
We investigate ill-posed semidefinite programming problems for which Slater’s constraint qualifications fail, and propose a new reliable termination criterium dealing with such problems. This criterium is scale-independent and provides verified forward error bounds for the true optimal value, where all rounding errors due to floating point arithmetic are taken into account. It is based on a bou...
متن کاملRigorous bounds on the stationary distributions of the chemical master equation via mathematical programming
The stochastic dynamics of networks of biochemical reactions in living cells are typically modelled using chemical master equations (CMEs). The stationary distributions of CMEs are seldom solvable analytically, and few methods exist that yield numerical estimates with computable error bounds. Here, we present two such methods based on mathematical programming techniques. First, we use semidefin...
متن کاملRobust Solutions to Least-squares Problems with Uncertain Data
We consider least-squares problems where the coefficient matrices A, b are unknown but bounded. We minimize the worst-case residual error using (convex) second-order cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A. The method can be interpreted as a Tikhonov regularization procedure, with the advantage that it provides an exact bound on t...
متن کاملVSDP: Verified SemiDefinite Programming
VSDP is a MATLAB software package for rigorously solving semidefinite programming problems. It expresses these problems in a notation closely related to the form given in textbooks and scientific papers. Functions for computing verified forward error bounds of the true optimal value and verified certificates of feasibility and infeasibility are provided. All rounding errors due to floating poin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2007